일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 프로그래머스
- 3D
- level2
- 큐
- point cloud
- transformer
- 논문 구현
- center loss
- Python
- numpy
- Computer Vision
- Object Tracking
- deep learning
- 자료구조
- OpenCV
- 스택
- Object Detection
- Knowledge Distillation
- flame
- NLP
- 파이썬
- Threshold
- 알고리즘
- 임계처리
- attention
- reconstruction
- re-identification
- 딥러닝
- Deeplearning
- cv2
- Today
- Total
목록Object Tracking (3)
공돌이 공룡의 서재
Introduction 기존의 SOTA MOT 방법들은 low confidence detection box를 제거하기 위해 detection box 로 인한 true positive / false positive 문제를 다뤘다. →threshold를 기준으로 detection box 를 제거하다보니 생기는 true positive / false positive 문제를 다뤄야만 했다. FairMOT만 봐도, 0.5 가 넘는 box만 선택해서 사용한다. 이 논문의 요지는 과연 기존 방식대로 low confidence detection box를 지우는 것은 옳은 접근일까? 에서 시작된다. 저자들은 그렇지 않다라는 입장에서 문제에 접근하고 있다. → low confidence detection box도 obje..
1. DeepSORT 이전에 올린 글에서, SORT 는 결국 motion 을 기반으로 tracking 하는 방식이라고 설명했다. Kalman Filter 와 IOU cost 만을 사용하기 때문이다. 따라서 두 Track 이 겹칠 때에도 이 2가지만 사용하기 때문에, 생김새가 다름에도 불구하고 ID 가 바뀌는 경우가 빈번히 일어난다. 이 배경에서 등장한 것이 DeepSORT 이다. SORT 과정 앞에 Appearance 를 기준으로 1차 matching 을 한 다음, 여기서 matching 이 안 되는 Track 과 Detection box 들에 대해 SORT 방식으로 진행한다. 즉, Motion-based Tracker 인 SORT에 Appearance-based Tracker 가 추가된 것이다. Flo..
1. Multiple Object Tracking (MOT) Overview Object Tracking? 비디오 또는 스트리밍 형태로 연속적인 프레임들이 주어질 때, 물체를 추적(Track)하는 Task다. Multiple Object Tracking 과 Visual Tracking 이렇게 크게 2 분류로 나뉜다. 전자는 bounding box를 이용하여 여러 객체들을 추적하는 것인 반면, 후자는 하나의 객체만 추적하는데, 대신에 instance segmentation처럼 mask 까지 예측하면서 추적한다. 이 글에서는 MOT의 기본적인 내용들에 대해 자세히 풀어보겠다. MOT Overview 모델의 구조는 일반적으로 Detector 와 Tracker 이렇게 2가지로 구성한다. Detector 는 흔히..