Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 논문 구현
- center loss
- 프로그래머스
- 3D
- Object Tracking
- NLP
- 자료구조
- Python
- transformer
- Computer Vision
- Knowledge Distillation
- OpenCV
- deep learning
- 스택
- re-identification
- flame
- 딥러닝
- numpy
- point cloud
- level2
- Deeplearning
- 임계처리
- Object Detection
- attention
- reconstruction
- 파이썬
- 알고리즘
- Threshold
- 큐
- cv2
Archives
- Today
- Total
목록퍼셉트론 (1)
공돌이 공룡의 서재

퍼셉트론을 tensorflow, keras, 또는 torch를 사용하지 않고 구현하려면 forwarding과 back propagation, activation function 등이 어떻게 이뤄지고 구성되어 있는지를 정확히 알고 있어야 한다. 수학을 공부할 때 모르는 개념이 있다면 증명을 한 번 해보듯이, 입문하는 분들이라면 해볼 만한 과제라고 생각한다. 딥러닝 모델 구현은 크게 다음과 같은 부분으로 나뉠 수 있다. 모델 설정 : node의 수, weight의 초기값, bias의 초기값, 등을 설정한다. 손실함수 : 손실 함수에 대한 미분으로 역전파를 할 수 있다. feed forward : 입력층 - 은닉층 - 출력층까지 값을 주는 것을 말한다 손실 함수 & back propagation : 층 사이의..
딥러닝
2021. 1. 2. 02:38