Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- flame
- attention
- Deeplearning
- 임계처리
- re-identification
- deep learning
- center loss
- Object Detection
- level2
- 3D
- Threshold
- OpenCV
- Knowledge Distillation
- 큐
- cv2
- 프로그래머스
- 논문 구현
- Python
- point cloud
- numpy
- 자료구조
- 스택
- 파이썬
- reconstruction
- 알고리즘
- Object Tracking
- NLP
- Computer Vision
- 딥러닝
- transformer
Archives
- Today
- Total
목록직접 구현 (1)
공돌이 공룡의 서재

퍼셉트론을 tensorflow, keras, 또는 torch를 사용하지 않고 구현하려면 forwarding과 back propagation, activation function 등이 어떻게 이뤄지고 구성되어 있는지를 정확히 알고 있어야 한다. 수학을 공부할 때 모르는 개념이 있다면 증명을 한 번 해보듯이, 입문하는 분들이라면 해볼 만한 과제라고 생각한다. 딥러닝 모델 구현은 크게 다음과 같은 부분으로 나뉠 수 있다. 모델 설정 : node의 수, weight의 초기값, bias의 초기값, 등을 설정한다. 손실함수 : 손실 함수에 대한 미분으로 역전파를 할 수 있다. feed forward : 입력층 - 은닉층 - 출력층까지 값을 주는 것을 말한다 손실 함수 & back propagation : 층 사이의..
딥러닝
2021. 1. 2. 02:38